
projekt zaliczeniowy

Komunikacja Człowiek-Komputer

Wariant „Speller”
Jakub Mańczak, Michał Kamieniak

Spis treści
Informacje porządkowe . ⁠2

Program do wyświetlania i rejestrowania bodźców . ⁠3

Zbieranie danych . ⁠4

Analiza główna . ⁠4

Błąd analizy . ⁠5

Poprawa błędu . ⁠5

Podsumowanie . ⁠6

Refleksja nad rozwiązaniem błędu . ⁠6

Kod źródłowy . ⁠7

Program do wyświetlania liter (wyswietlacz_liter.py) . ⁠7

Skrypt do analizy głównej (składowa projekt.ipynb) . ⁠9

Informacje porządkowe
Projekt został wykonany wspólnie przez Michała Kamieniaka i Jakuba Mańczaka, jako forma

składowa zaliczenia laboratoriów z przedmiotu Komunikacja Człowiek-Komputer w roku

akademickim 2025/2026.

Całość projektu jest dostępna na GitHubie: https://github.com/jakubmanczak/literkowo.

Do poprawnej rekreacji i wykonania kodu potrzebne będzie kilka modułów zależnych,

wymienionych w pliku pyproject.toml, a także moduł aseegg.py.

Do pracy nad projektem użyto menedżera modułów uv.

https://github.com/jakubmanczak/literkowo

Program do wyświetlania i rejestrowania bodźców
Wykorzystując bibliotekę pygame utworzono prosty program do wyświetlania bodźców i

rejestrowania o nich podstawowych informacji (wyświetlaną literę, czas początku i końca jej

wyświetlania).

Owy program działa w pętli; mając w tle otwarty plik z zapisem bodźców, iteruje się przez alfabet

łaciński, wyświetlając każdą literę przez jedną sekundę, po której upłynięciu nie wyświetla niczego

przez następną sekundę.

Dane zapisane w wyniku działania programu znajdą się w pliku letter_log.txt. Każda linijka w

pliku zawiera dane dotyczące jednego bodźca (litery), którego dane to kolejno: wyświetlana litera,

moment rozpoczęcia wyświetlania litery, oraz moment zakończenia wyświetlania litery - dwie

ostatnie w formacie UNIX Timestamp z dokładnością do 9 miejsc po przecinku. Dane są oddzielone

znakiem tabu (\t).

Odstęp sekundowy został wybrany ze wzgledu na komfort osoby badanej - tej kodującej wiadomość

za pomocą mrugnięć. W ten sposób możliwe jest ignorowanie mrugnięć występujących podczas

przerw, zdejmując z badanego wymóg całkowego wypierania się odruchu mrugania za wyjątkiem

podczas wyświetlania pożądanych liter.

Program działa do momentu przerwania jego wykonywania za pomocą sygnału SIGINT

(np. wciskując równocześnie Ctrl + C na klawiaturze) lub w inny sposób.

Rysunek 1: Program wyświetlający litery (wyswietlacz_liter.py)

Zbieranie danych
Dane zebrano 5 grudnia 2025 w sali 67 w budynku na Kampusie Ogrody.

Użyto trzech elektrod - jedną przylegającą do czoła w celu odczytu aktywności mięśni czoła

(ruch powiek), oraz dwie przylegające do uszu, służące eliminacji szumu.

Badany wybierając słowo zdecydował się na skrótowiec znanej serii Five Night’s at Freddy’s -

- „FNAF”, której film miał premierę tego samego dnia.

Podjęto dwie próby; jednak zgodnie z zaleceniem prowadzącego wybrano skupić się na tej drugiej,

gdyż po wstępnej wizualizacji danych wyglądała bardziej obiecująco.

Rysunek 2: Wizualizacja próby nr. 1. Rysunek 3: Wizualizacja próby nr. 2.

Analiza główna
Do analizy mającej na celu odczyt przeliterowanego mrugnięciami słowa zdecydowano się

zastosować poniższą strategię:

1. Zebranie czasów pojedynczych mrugnięć do tablicy.

Ustalono wartość progową amplitudy sygnału EMG równą 50. Następnie sprawdzając każdy

z zapisów amplitudy, jeżeli wartość przekroczyła próg dodano czas jej wystąpienia do tablicy.

Aby uzyskać pojedynczą wartość na każde mrugnięcie zastosowano zmienną logiczną: jeżeli

wartość przekroczyła próg, nie zbierano nowych wartości dopóki krzywa nie zeszła z powrotem

poniżej progu.

2. Porównanie z wartościami początków i końców wyświetlania liter.

Każdy z zapisów mrugnięć został porównany z całą tablicą wyświetlonych liter, oraz ich czasów

granicznych. Jeżeli mrugnięcie wystąpiło podczas wyświetlania danej litery, litera ta została

wyświetlona przez skrypt analizujący.

Błąd analizy

Rysunek 4: Fragment zrzutu ekranu z wynikiem

działania wyżej opisanego skryptu.

Rysunek 5: Fragment zrzutu ekranu z wynikiem

dalszej analizy błędu.

Mimo pojedynczego mrugnięcia osoby badanej skrypt wykrył dwa mrugnięcia dla litery „N”.

Po dodaniu do wyświetlanych liter ich czasów wystąpienia, poddano analizie fragment powodujący

podwójne wystąpienie litery.

Rysunek 6: Wykres ilustrujący powód błędu w skrypcie:

podwójne przekroczenie wyznaczonego progu.

Poprawa błędu
Aby zaradzić powyższemu błędowi oraz błędom mu podobnym, do skryptu analizującego

wprowadzono odstęp czasowy między akceptacją czasów mrugnięć; jeżeli następne wykryte

mrugnięcie ma miejsce mniej niż 0.3 sekundy po poprzednim, nie jest akceptowane.

Dzięki takiej zmianie wynik analizy pokrywał się z zamiarem osoby badanej.

Podsumowanie
Projekt zakończył się sukcesem - w dwie próby udało się uzyskać wynik zgodny z założeniami i

odczytać słowo przeliterowane przez osobę badaną.

Rysunek 7: Finalny, poprawny i zgodny

z zamiarem osoby badanej wynik.

Refleksja nad rozwiązaniem błędu
Zastosowane w tym przypadku rozwiązanie - ignorowanie kolejnych przekroczeń progu przez

krótki czas od poprzedniego przekroczenia - sprawdzi się dobrze w sytuacji, w której wiemy, że

mrugnięcia będą sporadyczne i kontrolowane, a odstępy między bodźcami zniewlują możliwość

pomyłki czy reakcji na zły bodziec. Nie sprawdzi się ono jednak w sytuacjach, gdy dwa bodźce

występują jeden po drugim, a mrugnięcie znajdzie się na ich granicy; nie będzie bowiem wiadomo,

które z wykrytych mrugnięć jest tym prawidłowym.

Kod źródłowy

Program do wyświetlania liter (wyswietlacz_liter.py)

1 #!/usr/bin/env python3 Python

2 import time

3

4 import pygame

5

6 SCREEN_WIDTH = 1280

7 SCREEN_HEIGHT = 720

8 FONT_SIZE = 220

9 LETTER_INTERVAL = 1.0

10 BREAK_DURATION = 1.0

11 LOG_FILENAME = "letter_log.txt"

12 BG_COLOR = (0, 0, 0)

13 FG_COLOR = (255, 255, 255)

14

15 # fmt: off

16 letters = [

17 "A", "B", "C", "D", "E", "F", "G", "H", "I", "J", "K",

18 "L", "M", "N", "O", "P", "Q", "R", "S", "T", "U", "V",

19 "W", "X", "Y", "Z"

20]

21

22 pygame.init()

23 screen = pygame.display.set_mode((SCREEN_WIDTH, SCREEN_HEIGHT))

24 pygame.display.set_caption("SUPER FAJNY PROJEKT LITERKOWO")

25 clock = pygame.time.Clock()

26 FONT = pygame.font.Font(None, FONT_SIZE)

27

28 log_file = open(LOG_FILENAME, "a")

29

30 state = "show_letter"

31 next_switch = time.perf_counter()

32

33 index = 0

34 pending_letter = None

35 pending_start_unix = None

36

37 running = True

38 while running:

39 for event in pygame.event.get():

40 if event.type == pygame.QUIT:

41 running = False

42 elif event.type == pygame.KEYDOWN:

43 if event.key == pygame.K_ESCAPE:

44 running = False

45

46 now_perf = time.perf_counter()

47 if now_perf >= next_switch:

48 if state == "show_letter":

49 start_unix = time.time()

50 letter = letters[index]

51

52 screen.fill(BG_COLOR)

53 surf = FONT.render(letter, True, FG_COLOR)

54 rect = surf.get_rect(center=(SCREEN_WIDTH // 2, SCREEN_HEIGHT // 2))

55 screen.blit(surf, rect)

56 pygame.display.flip()

57

58 pending_letter = letter

59 pending_start_unix = start_unix

60

61 next_switch = now_perf + LETTER_INTERVAL

62 state = "breaktime"

63

64 index = (index + 1) % len(letters)

65

66 elif state == "breaktime":

67 end_unix = time.time()

68 if pending_letter is not None:

69 log_file.write(

70

f"{pending_letter}\t{pending_start_unix:.9f}\t{end_unix:.9f}\n"

71)

72 log_file.flush()

73

74 pending_letter = None

75 pending_start_unix = None

76

77 screen.fill(BG_COLOR)

78 pygame.display.flip()

79

80 next_switch = now_perf + BREAK_DURATION

81 state = "show_letter"

82

83 clock.tick(60)

84

85 if pending_letter is not None:

86 exit_unix = time.time()

87

log_file.write(f"{pending_letter}\t{pending_start_unix:.9f}\t{exit_unix:.9f}\n")

88 log_file.flush()

89

90 log_file.close()

91 pygame.quit()

Skrypt do analizy głównej (składowa projekt.ipynb)

1 # SKRYPT DEKODUJĄCO-PORÓWNAWCZY WERSJA 2 Python

2

3 import pandas as pd

4 import numpy as np

5 import matplotlib.pyplot as plt

6 import aseegg as ag

7

8 df = pd.read_csv("proba2/ganglion_4ch_2025-12-05_10-58-15.csv")

9 przef = ag.gornoprzepustowy(df['ch1'], 200, 1)

10 przef = ag.pasmowozaporowy(przef, 200, 48, 52)

11 przef = ag.pasmowoprzepustowy(przef, 200, 3, 40)

12

13 mrugniecia = []

14 flaga = False

15 granica = 50

16 odstep = 0.3

17 for indeks, wartosc in enumerate(przef):

18 if wartosc > 50 and flaga == False:

19 flaga = True

20 if len(mrugniecia) != 0:

21 if df['time'][indeks] - mrugniecia[-1] >= odstep:

22 mrugniecia.append(df['time'][indeks])

23 else:

24 mrugniecia.append(df['time'][indeks])

25 if wartosc < 50:

26 flaga = False

27

28
literki = pd.read_csv("proba2/letter_log.txt", names=['litera', 'czas_start',
'czas_stop'], sep="\t")

29

30 for mrug in mrugniecia:

31 for kol, rzad in literki.iterrows():

32 if mrug > rzad['czas_start'] and mrug < rzad['czas_stop']:

33 print(rzad['litera'])

	Informacje porządkowe
	Program do wyświetlania i rejestrowania bodźców
	Zbieranie danych
	Analiza główna
	Błąd analizy
	Poprawa błędu

	Podsumowanie
	Refleksja nad rozwiązaniem błędu

	Kod źródłowy
	Program do wyświetlania liter (wyswietlacz_liter.py)
	Skrypt do analizy głównej (składowa projekt.ipynb)

